Function reference
-
PINstimation-package
- An R package for estimating the probability of informed trading
Factorizations of PIN likelihood functions
Log-transformations of the different PIN likelihood functions (PIN, MPIN, AdjPIN) to avoid floating-point errors.
-
fact_pin_eho()
fact_pin_lk()
fact_pin_e()
fact_mpin()
fact_adjpin()
- Factorizations of the different PIN likelihood functions
Initial sets for PIN estimation
Implementation of the algorithms developed to generate initial parameter sets for the estimation of the original PIN model.
-
initials_pin_ea()
- Initial parameter sets of Ersan & Alici (2016)
-
initials_pin_gwj()
- Initial parameter set of Gan et al.(2015)
-
initials_pin_yz()
- Initial parameter sets of Yan and Zhang (2012)
Estimation of PIN model
Implementation of maximum likelihood estimation of the original PIN model using the different algorithms of initial parameter sets.
-
pin()
- PIN estimation - custom initial parameter sets
-
pin_bayes()
- PIN estimation - Bayesian approach
-
pin_ea()
- PIN estimation - initial parameter sets of Ersan & Alici (2016)
-
pin_gwj()
- PIN estimation - initial parameter set of Gan et al. (2015)
-
pin_yz()
- PIN estimation - initial parameter sets of Yan & Zhang (2012)
Simulation of PIN Data
Using the function generatedata_mpin(), we can generate data following the original PIN model by setting the argument layers
to 1.
-
generatedata_mpin()
- Simulation of MPIN model data
PIN posterior probabilities
Computation of posterior probabilties of trading days at the optimal probabilities, and rate parameters.
-
get_posteriors()
- Posterior probabilities for PIN and MPIN estimates
Layer Detection in datasets
Implementation of the different algorithms of MPIN information layer detection in trade data.
-
detectlayers_e()
detectlayers_eg()
detectlayers_ecm()
- Layer detection in trade-data
Initial sets for MPIN estimation
Implementation of the algorithm of Ersan (2016) to generate initial parameter sets for the estimation of the multilayer PIN model.
-
initials_mpin()
- MPIN initial parameter sets of Ersan (2016)
Estimation of MPIN model
Implementation of maximum likelihood estimation of the multilayer PIN model using standard methods, and the Expectation-Maximization algorithm.
-
mpin_ecm()
- MPIN model estimation via an ECM algorithm
-
mpin_ml()
- MPIN model estimation via standard ML methods
Simulation of MPIN Data
Using either random, or provided parameters, or range of parameters; generation of levels of daily buyer-initiated, and seller-initated trades following the distribution of trade levels in the multilayer PIN model.
-
generatedata_mpin()
- Simulation of MPIN model data
MPIN posterior probabilities
Computation of posterior probabilties of trading days at the optimal probabilities, and rate parameters.
-
get_posteriors()
- Posterior probabilities for PIN and MPIN estimates
Initial sets for AdjPIN estimation
Implementation of three algorithms to generate initial parameter sets for the estimation of the Adjusted PIN model.
-
initials_adjpin()
- AdjPIN initial parameter sets of Ersan & Ghachem (2022b)
-
initials_adjpin_cl()
- AdjPIN initial parameter sets of Cheng and Lai (2021)
-
initials_adjpin_rnd()
- AdjPIN random initial sets
Estimation of AdjPIN model
Implementation of maximum likelihood estimation of the Adjusted PIN model using standard methods, and the Expectation-Maximization algorithm.
-
adjpin()
- Estimation of adjusted PIN model
Simulation of AdjPIN Data
Using random parameters, provided parameters, or range(s) of parameters; generation of levels of daily buyer-initiated, and seller-initated trades following the distribution of trade levels in the Adjusted PIN model.
-
generatedata_adjpin()
- Simulation of AdjPIN model data.
-
vpin()
- Estimation of Volume-Synchronized PIN model
Aggregation of high-frequency data
Implementation of four classification algorithms in order to aggregate high frequency data into daily data.
-
classify_trades()
aggregate_trades()
- Classification and aggregation of high-frequency data
-
dailytrades
- Example of quarterly data
-
hfdata
- High-frequency trade-data
Data simulation classes
Details of the S4 classes used to generate S4 objects that contain the generation parameters of the generated datasets or series of datasets.
-
show(<dataset>)
- Simulated data object
-
show(<data.series>)
- List of dataset objects
Estimation results classes
Details of the S4 classes used to generate S4 objects that contain the estimation results of the different estimation functions.
-
show(<estimate.adjpin>)
- AdjPIN estimation results
-
show(<estimate.mpin>)
- MPIN estimation results
-
show(<estimate.mpin.ecm>)
selectModel()
getSummary()
- MPIN estimation results (ECM)
-
show(<estimate.pin>)
- PIN estimation results
-
show(<estimate.vpin>)
- VPIN estimation results
-
set_display_digits()
- Package-wide number of digits